Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Wrapping Cycles in Delaunay Complexes: Bridging Persistent Homology and Discrete Morse Theory (2212.02345v3)

Published 5 Dec 2022 in math.AT, cs.CG, and math.GT

Abstract: We study the connection between discrete Morse theory and persistent homology in the context of shape reconstruction methods. Specifically, we consider the construction of Wrap complexes, introduced by Edelsbrunner as a subcomplex of the Delaunay complex, and the construction of lexicographic optimal homologous cycles, also considered by Cohen-Steiner, Lieutier, and Vuillamy in a similar setting. We show that for any cycle in a Delaunay complex for a given radius parameter, the lexicographically optimal homologous cycle is supported on the Wrap complex for the same parameter, thereby establishing a close connection between the two methods. We obtain this result by establishing a fundamental connection between reduction of cycles in the computation of persistent homology and gradient flows in the algebraic generalization of discrete Morse theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. A simple algorithm for homeomorphic surface reconstruction. Internat. J. Comput. Geom. Appl., 12(1-2):125–141, 2002. 16th Annual Symposium on Computational Geometry (Kowloon, 2000). \hrefhttps://doi.org/10.1142/S0218195902000773 \pathdoi:10.1142/S0218195902000773.
  2. The power crust, unions of balls, and the medial axis transform. Comput. Geom., 19(2-3):127–153, 2001. Combinatorial curves and surfaces. \hrefhttps://doi.org/10.1016/S0925-7721(01)00017-7 \pathdoi:10.1016/S0925-7721(01)00017-7.
  3. Tight bounds for the learning of homotopy à la Niyogi, Smale, and Weinberger for subsets of Euclidean spaces and of Riemannian manifolds. In 40th International Symposium on Computational Geometry (SoCG 2024), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), 2024. \hrefhttps://arxiv.org/abs/2206.10485 \patharXiv:2206.10485.
  4. Delaunay-like triangulation of smooth orientable submanifolds by ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-norm minimization. In 38th International Symposium on Computational Geometry, volume 224 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 8, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022. \hrefhttps://doi.org/10.4230/lipics.socg.2022.8 \pathdoi:10.4230/lipics.socg.2022.8.
  5. Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl. Comput. Topol., 5(3):391–423, 2021. \hrefhttps://doi.org/10.1007/s41468-021-00071-5 \pathdoi:10.1007/s41468-021-00071-5.
  6. The Morse theory of Čech and Delaunay complexes. Trans. Amer. Math. Soc., 369(5):3741–3762, 2017. \hrefhttps://doi.org/10.1090/tran/6991 \pathdoi:10.1090/tran/6991.
  7. A unified view on the functorial nerve theorem and its variations. Expo. Math., 41(4):125503, 2023. \hrefhttps://doi.org/10.1016/j.exmath.2023.04.005 \pathdoi:10.1016/j.exmath.2023.04.005.
  8. Optimal topological simplification of discrete functions on surfaces. Discrete Comput. Geom., 47(2):347–377, 2012. \hrefhttps://doi.org/10.1007/s00454-011-9350-z \pathdoi:10.1007/s00454-011-9350-z.
  9. Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Vietoris-Rips Filtrations. In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:15, 2022. \hrefhttps://doi.org/10.4230/LIPIcs.SoCG.2022.15 \pathdoi:10.4230/LIPIcs.SoCG.2022.15.
  10. WrappingCycles, 2023. Executable directly by running docker build -o output github.com/fabian-roll/wrappingcycles on any machine with Docker installed and configured with sufficient memory (16GB recommended). URL: \urlhttps://github.com/fabian-roll/wrappingcycles.
  11. Geometric and topological inference. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2018. \hrefhttps://doi.org/10.1017/9781108297806 \pathdoi:10.1017/9781108297806.
  12. Manifold reconstruction using tangential Delaunay complexes. Discrete Comput. Geom., 51(1):221–267, 2014. \hrefhttps://doi.org/10.1007/s00454-013-9557-2 \pathdoi:10.1007/s00454-013-9557-2.
  13. Sliver exudation. J. ACM, 47(5):883–904, 2000. \hrefhttps://doi.org/10.1145/355483.355487 \pathdoi:10.1145/355483.355487.
  14. Manifold reconstruction from point samples. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1018–1027. ACM, New York, 2005. \hrefhttps://doi.org/10.5555/1070432.1070579 \pathdoi:10.5555/1070432.1070579.
  15. Stability of persistence diagrams. Discrete Comput. Geom., 37(1), 2007. \hrefhttps://doi.org/10.1007/s00454-006-1276-5 \pathdoi:10.1007/s00454-006-1276-5.
  16. Vines and vineyards by updating persistence in linear time. In Computational geometry (SCG’06), pages 119–126. ACM, New York, 2006. \hrefhttps://doi.org/10.1145/1137856.1137877 \pathdoi:10.1145/1137856.1137877.
  17. Lexicographic optimal chains and manifold triangulations. Research report, INRIA Sophia-Antipolis Méditerranée, December 2019. URL: \urlhttps://hal.science/hal-02391190.
  18. Lexicographic optimal homologous chains and applications to point cloud triangulations. Discrete Comput. Geom., 68(4):1155–1174, 2022. Special Issue: 36th Annual Symposium on Computational Geometry (SoCG 2020). \hrefhttps://doi.org/10.1007/s00454-022-00432-6 \pathdoi:10.1007/s00454-022-00432-6.
  19. Delaunay and regular triangulations as lexicographic optimal chains. Discrete Comput. Geom., 70(1):1–50, 2023. \hrefhttps://doi.org/10.1007/s00454-023-00485-1 \pathdoi:10.1007/s00454-023-00485-1.
  20. Dualities in persistent (co)homology. Inverse Problems, 27(12):124003, 17, 2011. \hrefhttps://doi.org/10.1088/0266-5611/27/12/124003 \pathdoi:10.1088/0266-5611/27/12/124003.
  21. Tamal K. Dey. Curve and surface reconstruction: algorithms with mathematical analysis, volume 23 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2007. \hrefhttps://doi.org/10.1017/CBO9780511546860 \pathdoi:10.1017/CBO9780511546860.
  22. Critical points of the distance to an epsilon-sampling of a surface and flow-complex-based surface reconstruction. In Computational geometry (SCG’05), pages 218–227. ACM, New York, 2005. \hrefhttps://doi.org/10.1145/1064092.1064126 \pathdoi:10.1145/1064092.1064126.
  23. Herbert Edelsbrunner. The union of balls and its dual shape. Discrete Comput. Geom., 13(3-4):415–440, 1995. \hrefhttps://doi.org/10.1007/BF02574053 \pathdoi:10.1007/BF02574053.
  24. Herbert Edelsbrunner. Surface reconstruction by wrapping finite sets in space. In Discrete and computational geometry, volume 25 of Algorithms Combin., pages 379–404. Springer, Berlin, 2003. \hrefhttps://doi.org/10.1007/978-3-642-55566-4_17 \pathdoi:10.1007/978-3-642-55566-4_17.
  25. Computational topology. American Mathematical Society, Providence, RI, 2010. An introduction. \hrefhttps://doi.org/10.1090/mbk/069 \pathdoi:10.1090/mbk/069.
  26. Tri-partitions and bases of an ordered complex. Discrete Comput. Geom., 64(3):759–775, 2020. \hrefhttps://doi.org/10.1007/s00454-020-00188-x \pathdoi:10.1007/s00454-020-00188-x.
  27. Computing linking numbers of a filtration. Homology Homotopy Appl., 5(2):19–37, 2003. Algebraic topological methods in computer science (Stanford, CA, 2001). \hrefhttps://doi.org/10.4310/HHA.2003.v5.n2.a2 \pathdoi:10.4310/HHA.2003.v5.n2.a2.
  28. Robin Forman. Morse theory for cell complexes. Adv. Math., 134(1):90–145, 1998. \hrefhttps://doi.org/10.1006/aima.1997.1650 \pathdoi:10.1006/aima.1997.1650.
  29. Ragnar Freij. Equivariant discrete Morse theory. Discrete Math., 309(12):3821–3829, 2009. \hrefhttps://doi.org/10.1016/j.disc.2008.10.029 \pathdoi:10.1016/j.disc.2008.10.029.
  30. Minimal resolutions via algebraic discrete Morse theory. Mem. Amer. Math. Soc., 197(923):vi+74, 2009. \hrefhttps://doi.org/10.1090/memo/0923 \pathdoi:10.1090/memo/0923.
  31. Dmitry Kozlov. Combinatorial algebraic topology, volume 21 of Algorithms and Computation in Mathematics. Springer, Berlin, 2008. \hrefhttps://doi.org/10.1007/978-3-540-71962-5 \pathdoi:10.1007/978-3-540-71962-5.
  32. Stanford Computer Graphics Laboratory. The Stanford 3D Scanning Repository. URL: \urlhttp://graphics.stanford.edu/data/3Dscanrep/.
  33. Leon Lampret. Chain complex reduction via fast digraph traversal. Preprint, 2020. \hrefhttps://arxiv.org/abs/1903.00783 \patharXiv:1903.00783.
  34. S. Lefschetz. Algebraic Topology. AMS books online. American Mathematical Society, 1942.
  35. Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom., 50(2):330–353, 2013. \hrefhttps://doi.org/10.1007/s00454-013-9529-6 \pathdoi:10.1007/s00454-013-9529-6.
  36. James R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park, CA, 1984.
  37. Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom., 39(1-3):419–441, 2008. \hrefhttps://doi.org/10.1007/s00454-008-9053-2 \pathdoi:10.1007/s00454-008-9053-2.
  38. Alpha wrapping with an offset. ACM Trans. Graph., 41(4):127:1–127:22, 2022. \hrefhttps://doi.org/10.1145/3528223.3530152 \pathdoi:10.1145/3528223.3530152.
  39. Geometric and topological guarantees for the WRAP reconstruction algorithm. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1086–1095. ACM, New York, 2007.
  40. Bardia Sadri. Manifold homotopy via the flow complex. Comput. Graph. Forum, 28(5):1361–1370, 2009. URL: \urlhttps://doi.org/10.1111/j.1467-8659.2009.01513.x, \hrefhttps://doi.org/10.1111/J.1467-8659.2009.01513.X \pathdoi:10.1111/J.1467-8659.2009.01513.X.
  41. Emil Sköldberg. Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc., 358(1):115–129, 2006. \hrefhttps://doi.org/10.1090/S0002-9947-05-04079-1 \pathdoi:10.1090/S0002-9947-05-04079-1.
  42. Julien Vuillamy. Planimetric simplification and lexicographic optimal chains for 3D urban scene reconstruction. Theses, Université Côte d’Azur, September 2021. URL: \urlhttps://hal.science/tel-03339931.
  43. Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994. \hrefhttps://doi.org/10.1017/CBO9781139644136 \pathdoi:10.1017/CBO9781139644136.
  44. Computing persistent homology. Discrete Comput. Geom., 33(2):249–274, 2005. \hrefhttps://doi.org/10.1007/s00454-004-1146-y \pathdoi:10.1007/s00454-004-1146-y.
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com