Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Measurements of azimuthal anisotropy of nonprompt D$^0$ mesons in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV (2212.01636v2)

Published 3 Dec 2022 in nucl-ex and hep-ex

Abstract: Measurements of the elliptic ($v_2$) and triangular ($v_3$) azimuthal anisotropy coefficients are presented for D$0$ mesons produced in b hadron decays (nonprompt D$0$ mesons) in lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The results are compared with previously published charm meson anisotropies measured using prompt D$0$ mesons. The data were collected with the CMS detector in 2018 with an integrated luminosity of 0.58 nb${-1}$. Azimuthal anisotropy is sensitive to the interactions of quarks with the hot and dense medium created in heavy ion collisions. Comparing results for prompt and nonprompt D$0$ mesons can assist in understanding the mass dependence of these interactions. The nonprompt results show lower magnitudes of $v_2$ and $v_3$ and weaker dependences on the meson transverse momentum and collision centrality than those found for prompt D$0$ mesons. The results are in agreement with theoretical predictions that include a mass dependence in the interactions of quarks with the medium.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. BRAHMS Collaboration, “Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1, 10.1016/j.nuclphysa.2005.02.130, arXiv:nucl-ex/0410020.
  2. PHOBOS Collaboration, “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28, 10.1016/j.nuclphysa.2005.03.084, arXiv:nucl-ex/0410022.
  3. STAR Collaboration, “Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102, 10.1016/j.nuclphysa.2005.03.085, arXiv:nucl-ex/0501009.
  4. PHENIX Collaboration, “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration”, Nucl. Phys. A 757 (2005) 184, 10.1016/j.nuclphysa.2005.03.086, arXiv:nucl-ex/0410003.
  5. S. A. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by fourier expansion of azimuthal particle distributions”, Z. Phys. C 70 (1996) 665, 10.1007/s002880050141, arXiv:hep-ph/9407282.
  6. W. Busza, K. Rajagopal, and W. van der Schee, “Heavy ion collisions: the big picture, and the big questions”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339, 10.1146/annurev-nucl-101917-020852, arXiv:1802.04801.
  7. J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, Phys. Rev. D 46 (1992) 229, 10.1103/PhysRevD.46.229.
  8. U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123, 10.1146/annurev-nucl-102212-170540, arXiv:1301.2826.
  9. C. Gale, S. Jeon, and B. Schenke, “Hydrodynamic modeling of heavy-ion collisions”, Int. J. Mod. Phys. A 28 (2013) 1340011, 10.1142/S0217751X13400113, arXiv:1301.5893.
  10. B. Alver and G. Roland, “Collision-geometry fluctuations and triangular flow in heavy-ion collisions”, Phys. Rev. C 81 (2010) 054905, 10.1103/PhysRevC.81.054905, arXiv:1003.0194.
  11. F. Prino and R. Rapp, “Open heavy flavor in QCD matter and in nuclear collisions”, J. Phys. G 43 (2016) 093002, 10.1088/0954-3899/43/9/093002, arXiv:1603.00529.
  12. R. Rapp et al., “Extraction of heavy-flavor transport coefficients in QCD matter”, Nucl. Phys. A 979 (2018) 21, 10.1016/j.nuclphysa.2018.09.002, arXiv:1803.03824.
  13. H. van Hees, V. Greco, and R. Rapp, “Heavy-quark probes of the quark-gluon plasma and interpretation of recent data taken at the BNL Relativistic Heavy Ion Collider”, Phys. Rev. C 73 (2006) 034913, 10.1103/PhysRevC.73.034913, arXiv:nucl-th/0508055.
  14. M. Gyulassy, I. Vitev, and X.-N. Wang, “High \pt azimuthal asymmetry in noncentral A+A𝐴𝐴A+Aitalic_A + italic_A at RHIC”, Phys. Rev. Lett. 86 (2001) 2537, 10.1103/PhysRevLett.86.2537, arXiv:nucl-th/0012092.
  15. E. V. Shuryak, “Azimuthal asymmetry at large \pt seem to be too large for a pure “jet quenching””, Phys. Rev. C 66 (2002) 027902, 10.1103/PhysRevC.66.027902, arXiv:nucl-th/0112042.
  16. ALICE Collaboration, “D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, Phys. Rev. Lett. 120 (2018) 102301, 10.1103/PhysRevLett.120.102301, arXiv:1707.01005.
  17. CMS Collaboration, “Measurement of prompt \PDz\PDz\PDz meson azimuthal anisotropy in Pb-Pb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, Phys. Rev. Lett. 120 (2018) 202301, 10.1103/PhysRevLett.120.202301, arXiv:1708.03497.
  18. CMS Collaboration, “Measurement of prompt D0superscriptD0\mathrm{D}^{0}roman_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and D¯0superscript¯D0\overline{\mathrm{D}}^{0}over¯ start_ARG roman_D end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at \sqrtsNN=5.02\sqrtsNN5.02\sqrtsNN=5.02= 5.02 TeV”, Phys. Lett. B 816 (2021) 136253, 10.1016/j.physletb.2021.136253, arXiv:2009.12628.
  19. ATLAS Collaboration, “Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02 with the ATLAS detector”, Phys. Lett. B 807 (2020) 135595, 10.1016/j.physletb.2020.135595, arXiv:2003.03565.
  20. ALICE Collaboration, “\cPJgy elliptic and triangular flow in Pb-Pb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, JHEP 10 (2020) 141, 10.1007/JHEP10(2020)141, arXiv:2005.14518.
  21. ALICE Collaboration, “Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb-Pb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, Phys. Lett. B 813 (2021) 136054, 10.1016/j.physletb.2020.136054, arXiv:2005.11131.
  22. CMS Collaboration, “Probing charm quark dynamics via multiparticle correlations in PbPb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, Phys. Rev. Lett. 129 (2022) 022001, 10.1103/PhysRevLett.129.022001, arXiv:2112.12236.
  23. CMS Collaboration, “Suppression and azimuthal anisotropy of prompt and nonprompt \cPJgy production in PbPb collisions at \sqrtsNN=2.76⁢\TeV\sqrtsNN2.76\TeV\sqrtsNN=2.76\TeV= 2.76”, Eur. Phys. J. C 77 (2017) 252, 10.1140/epjc/s10052-017-4781-1, arXiv:1610.00613.
  24. ALICE Collaboration, “Elliptic flow of electrons from beauty-hadron decays in Pb-Pb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, Phys. Rev. Lett. 126 (2021) 162001, 10.1103/PhysRevLett.126.162001, arXiv:2005.11130.
  25. Particle Data Group Collaboration, “Review of particle physics”, Prog. Theor. Exp. Phys. 2022 (2022) 083C01, 10.1093/ptep/ptac097.
  26. HEPData record for this analysis, 2022. 10.17182/hepdata.131598.
  27. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 03 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  28. CMS Collaboration, “Performance of the CMS level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  29. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  30. CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
  31. CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
  32. CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
  33. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  34. CMS Collaboration, “Observation and studies of jet quenching in PbPb collisions at \sqrtsNN=2.76⁢\TeV\sqrtsNN2.76\TeV\sqrtsNN=2.76\TeV= 2.76”, Phys. Rev. C 84 (2011) 024906, 10.1103/PhysRevC.84.024906, arXiv:1102.1957.
  35. CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=13⁢\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
  36. CMS Collaboration, “CMS luminosity measurement using nucleus-nucleus collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02 in 2018”, CMS Physics Analysis Summary CMS-PAS-LUM-18-001, 2022.
  37. CMS Collaboration, “Charged-particle nuclear modification factors in PbPb and pPb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, JHEP 04 (2017) 039, 10.1007/JHEP04(2017)039, arXiv:1611.01664.
  38. T. Sjöstrand et al., “An introduction to \PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  39. CMS Collaboration, “Extraction and validation of a new set of CMS \PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
  40. D. J. Lange, “The \EVTGEN particle decay simulation package”, Nucl. Instrum. Meth. A 462 (2001) 152, 10.1016/S0168-9002(01)00089-4.
  41. I. P. Lokhtin and A. M. Snigirev, “A model of jet quenching in ultrarelativistic heavy ion collisions and high-\pt\pt\pt hadron spectra at RHIC”, Eur. Phys. J. C 45 (2006) 211, 10.1140/epjc/s2005-02426-3, arXiv:hep-ph/0506189.
  42. GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  43. H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, “TMVA, the toolkit for multivariate data analysis with ROOT”, in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40. 2007. arXiv:physics/0703039. [PoS(ACAT)040]. 10.22323/1.050.0040.
  44. STAR Collaboration, “Elliptic flow from two- and four-particle correlations in Au + Au collisions at \sqrtsNN=130⁢\GeV\sqrtsNN130\GeV\sqrtsNN=130\GeV= 130”, Phys. Rev. C 66 (2002) 034904, 10.1103/PhysRevC.66.034904, arXiv:nucl-ex/0206001.
  45. A. M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions”, Phys. Rev. C 58 (1998) 1671, 10.1103/PhysRevC.58.1671, arXiv:nucl-ex/9805001.
  46. NA49 Collaboration, “Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40A and 158A GeV”, Phys. Rev. C 68 (2003) 034903, 10.1103/PhysRevC.68.034903, arXiv:nucl-ex/0303001.
  47. M. J. Oreglia, “A study of the reactions ψ′→γ⁢γ⁢ψ→superscript𝜓′𝛾𝛾𝜓\psi^{\prime}\to\gamma\gamma\psiitalic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_γ italic_γ italic_ψ”. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.
  48. CMS Collaboration, “Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies”, Phys. Lett. B 813 (2021) 136036, 10.1016/j.physletb.2020.136036, arXiv:2009.07065.
  49. CMS Collaboration, “Studies of beauty suppression via nonprompt D0superscriptD0\mathrm{D}^{0}roman_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT mesons in Pb-Pb collisions at \sqrtsNN=5.02⁢\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, Phys. Rev. Lett. 123 (2019) 022001, 10.1103/PhysRevLett.123.022001, arXiv:1810.11102.
  50. T. Song et al., “Tomography of the quark-gluon plasma by charm quarks”, Phys. Rev. C 92 (2015) 014910, 10.1103/PhysRevC.92.014910, arXiv:1503.03039.
  51. S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, “Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: heavy quark evolution”, Phys. Rev. C 94 (2016) 014909, 10.1103/PhysRevC.94.014909, arXiv:1605.06447.
  52. W.-J. Xing, S. Cao, G.-Y. Qin, and H. Xing, “Flavor hierarchy of jet quenching in relativistic heavy-ion collisions”, Phys. Lett. B 805 (2020) 135424, 10.1016/j.physletb.2020.135424, arXiv:1906.00413.
  53. M. He, R. J. Fries, and R. Rapp, “Heavy flavor at the large hadron collider in a strong coupling approach”, Phys. Lett. B 735 (2014) 445, 10.1016/j.physletb.2014.05.050, arXiv:1401.3817.
  54. S. Li, C. Wang, W. Renzhuo, and J. Liao, “Probing the transport properties of quark-gluon plasma via heavy-flavor Boltzmann and Langevin dynamics”, Phys. Rev. C 99 (2019) 054909, 10.1103/PhysRevC.99.054909, arXiv:1901.04600.
  55. S. Li and J. Liao, “Data-driven extraction of heavy quark diffusion in quark-gluon plasma”, Eur. Phys. J. C 80 7 (2020) 671, 10.1140/epjc/s10052-020-8243-9, arXiv:1912.08965.
  56. S. Shi, J. Liao, and M. Gyulassy, “Probing the color structure of the perfect QCD fluids via soft-hard-event-by-event azimuthal correlations”, Chin. Phys. C 42 (2018) 104104, 10.1088/1674-1137/42/10/104104, arXiv:1804.01915.
  57. S. Shi, J. Liao, and M. Gyulassy, “Global constraints from RHIC and LHC on transport properties of QCD fluids in CUJET/CIBJET framework”, Chin. Phys. C 43 (2019) 044101, 10.1088/1674-1137/43/4/044101, arXiv:1808.05461.
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com