Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

5G-NIDD: A Comprehensive Network Intrusion Detection Dataset Generated over 5G Wireless Network (2212.01298v1)

Published 2 Dec 2022 in cs.CR and cs.NI

Abstract: With a plethora of new connections, features, and services introduced, the 5th generation (5G) wireless technology reflects the development of mobile communication networks and is here to stay for the next decade. The multitude of services and technologies that 5G incorporates have made modern communication networks very complex and sophisticated in nature. This complexity along with the incorporation of Machine Learning (ML) and AI provides the opportunity for the attackers to launch intelligent attacks against the network and network devices. These attacks often traverse undetected due to the lack of intelligent security mechanisms to counter these threats. Therefore, the implementation of real-time, proactive, and self-adaptive security mechanisms throughout the network would be an integral part of 5G as well as future communication systems. Therefore, large amounts of data collected from real networks will play an important role in the training of AI/ML models to identify and detect malicious content in network traffic. This work presents 5G-NIDD, a fully labeled dataset built on a functional 5G test network that can be used by those who develop and test AI/ML solutions. The work further analyses the collected data using common ML models and shows the achieved accuracy levels.

Citations (52)

Summary

We haven't generated a summary for this paper yet.