Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Artificial Intelligence and Machine Learning in 5G Network Security: Opportunities, advantages, and future research trends (2007.04490v1)

Published 9 Jul 2020 in cs.CR and cs.LG

Abstract: Recent technological and architectural advancements in 5G networks have proven their worth as the deployment has started over the world. Key performance elevating factor from access to core network are softwareization, cloudification and virtualization of key enabling network functions. Along with the rapid evolution comes the risks, threats and vulnerabilities in the system for those who plan to exploit it. Therefore, ensuring fool proof end-to-end (E2E) security becomes a vital concern. AI and ML can play vital role in design, modelling and automation of efficient security protocols against diverse and wide range of threats. AI and ML has already proven their effectiveness in different fields for classification, identification and automation with higher accuracy. As 5G networks' primary selling point has been higher data rates and speed, it will be difficult to tackle wide range of threats from different points using typical/traditional protective measures. Therefore, AI and ML can play central role in protecting highly data-driven softwareized and virtualized network components. This article presents AI and ML driven applications for 5G network security, their implications and possible research directions. Also, an overview of key data collection points in 5G architecture for threat classification and anomaly detection are discussed.

Citations (31)

Summary

We haven't generated a summary for this paper yet.