Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Real-Time Sequential Conic Optimization for Multi-Phase Rocket Landing Guidance (2212.00375v2)

Published 1 Dec 2022 in math.OC

Abstract: We introduce a multi-phase rocket landing guidance framework that can handle nonlinear dynamics and does not mandate any additional mixed-integer or nonconvex constraints to handle discrete temporal events/switching. To achieve this, we first introduce sequential conic optimization (SeCO), a new paradigm for solving nonconvex optimal control problems that is entirely devoid of matrix factorizations and inversions. This framework combines sequential convex programming (SCP) and first-order conic optimization and can solve unified multi-phase trajectory optimization problems in real-time. The novel features of this framework are: (1) time-interval dilation, which enables multi-phase trajectory optimization with free-transition-time; (2) single-crossing compound state-triggered constraints, which are entirely convex if the trigger and constraint conditions are convex; (3) virtual state, which is a new approach to handling artificial infeasibility in SCP methods that preserves the shapes of the constraint sets; and, (4) the use of the proportional-integral projected gradient method (PIPG), a high-performance first-order conic optimization solver, in tandem with the penalized trust region (PTR) SCP algorithm. We demonstrate the efficacy and real-time capability of SeCO by solving a relevant multi-phase rocket landing guidance problem with nonlinear dynamics and convex constraints only, and observe that our solver is 2.7 times faster than a state-of-the-art convex optimization solver.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube