Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A linear filter regularization for POD-based reduced order models of the quasi-geostrophic equations (2211.16851v1)

Published 30 Nov 2022 in math.NA and cs.NA

Abstract: We propose a regularization for Reduced Order Models (ROMs) of the quasi-geostrophic equations (QGE) to increase accuracy when the Proper Orthogonal Decomposition (POD) modes retained to construct the reduced basis are insufficient to describe the system dynamics. Our regularization is based on the so-called BV-alpha model, which modifies the nonlinear term in the QGE and adds a linear differential filter for the vorticity. To show the effectiveness of the BV-alpha model for ROM closure, we compare the results computed by a POD-Galerkin ROM with and without regularization for the classical double-gyre wind forcing benchmark. Our numerical results show that the solution computed by the regularized ROM is more accurate, even when the retained POD modes account for a small percentage of the eigenvalue energy. Additionally, we show that, although computationally more expensive that the ROM with no regularization, the regularized ROM is still a competitive alternative to full order simulations of the QGE.

Citations (9)

Summary

We haven't generated a summary for this paper yet.