Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document Shadow Removal (2211.16675v2)

Published 30 Nov 2022 in cs.CV

Abstract: Shadow removal improves the visual quality and legibility of digital copies of documents. However, document shadow removal remains an unresolved subject. Traditional techniques rely on heuristics that vary from situation to situation. Given the quality and quantity of current public datasets, the majority of neural network models are ill-equipped for this task. In this paper, we propose a Transformer-based model for document shadow removal that utilizes shadow context encoding and decoding in both shadow and shadow-free regions. Additionally, shadow detection and pixel-level enhancement are included in the whole coarse-to-fine process. On the basis of comprehensive benchmark evaluations, it is competitive with state-of-the-art methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.