Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

MuSFA: Improving Music Structural Function Analysis with Partially Labeled Data (2211.15787v1)

Published 28 Nov 2022 in cs.SD and eess.AS

Abstract: Music structure analysis (MSA) systems aim to segment a song recording into non-overlapping sections with useful labels. Previous MSA systems typically predict abstract labels in a post-processing step and require the full context of the song. By contrast, we recently proposed a supervised framework, called "Music Structural Function Analysis" (MuSFA), that models and predicts meaningful labels like 'verse' and 'chorus' directly from audio, without requiring the full context of a song. However, the performance of this system depends on the amount and quality of training data. In this paper, we propose to repurpose a public dataset, HookTheory Lead Sheet Dataset (HLSD), to improve the performance. HLSD contains over 18K excerpts of music sections originally collected for studying automatic melody harmonization. We treat each excerpt as a partially labeled song and provide a label mapping, so that HLSD can be used together with other public datasets, such as SALAMI, RWC, and Isophonics. In cross-dataset evaluations, we find that including HLSD in training can improve state-of-the-art boundary detection and section labeling scores by ~3% and ~1% respectively.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.