Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of Foundation Models (2211.14946v2)

Published 27 Nov 2022 in cs.LG

Abstract: A growing ecosystem of large, open-source foundation models has reduced the labeled data and technical expertise necessary to apply machine learning to many new problems. Yet foundation models pose a clear dual-use risk, indiscriminately reducing the costs of building both harmful and beneficial machine learning systems. Policy tools such as restricted model access and export controls are the primary methods currently used to mitigate such dual-use risks. In this work, we review potential safe-release strategies and argue that both policymakers and AI researchers would benefit from fundamentally new technologies enabling more precise control over the downstream usage of open-source foundation models. We propose one such approach: the task blocking paradigm, in which foundation models are trained with an additional mechanism to impede adaptation to harmful tasks without sacrificing performance on desirable tasks. We call the resulting models self-destructing models, inspired by mechanisms that prevent adversaries from using tools for harmful purposes. We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning, which we call meta-learned adversarial censoring (MLAC). In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification without harming the model's ability to perform profession classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Peter Henderson (67 papers)
  2. Eric Mitchell (28 papers)
  3. Christopher D. Manning (169 papers)
  4. Dan Jurafsky (118 papers)
  5. Chelsea Finn (264 papers)
Citations (42)