Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

10 Security and Privacy Problems in Large Foundation Models (2110.15444v3)

Published 28 Oct 2021 in cs.CR and cs.LG

Abstract: Foundation models--such as GPT, CLIP, and DINO--have achieved revolutionary progress in the past several years and are commonly believed to be a promising approach for general-purpose AI. In particular, self-supervised learning is adopted to pre-train a foundation model using a large amount of unlabeled data. A pre-trained foundation model is like an ``operating system'' of the AI ecosystem. Specifically, a foundation model can be used as a feature extractor for many downstream tasks with little or no labeled training data. Existing studies on foundation models mainly focused on pre-training a better foundation model to improve its performance on downstream tasks in non-adversarial settings, leaving its security and privacy in adversarial settings largely unexplored. A security or privacy issue of a pre-trained foundation model leads to a single point of failure for the AI ecosystem. In this book chapter, we discuss 10 basic security and privacy problems for the pre-trained foundation models, including six confidentiality problems, three integrity problems, and one availability problem. For each problem, we discuss potential opportunities and challenges. We hope our book chapter will inspire future research on the security and privacy of foundation models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinyuan Jia (69 papers)
  2. Hongbin Liu (80 papers)
  3. Neil Zhenqiang Gong (117 papers)
Citations (7)