Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Topological Maps for Visual Navigation in Unexplored Environments (2211.12649v1)

Published 23 Nov 2022 in cs.RO and cs.CV

Abstract: We propose a robotic learning system for autonomous exploration and navigation in unexplored environments. We are motivated by the idea that even an unseen environment may be familiar from previous experiences in similar environments. The core of our method, therefore, is a process for building, predicting, and using probabilistic layout graphs for assisting goal-based visual navigation. We describe a navigation system that uses the layout predictions to satisfy high-level goals (e.g. "go to the kitchen") more rapidly and accurately than the prior art. Our proposed navigation framework comprises three stages: (1) Perception and Mapping: building a multi-level 3D scene graph; (2) Prediction: predicting probabilistic 3D scene graph for the unexplored environment; (3) Navigation: assisting navigation with the graphs. We test our framework in Matterport3D and show more success and efficient navigation in unseen environments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Huangying Zhan (17 papers)
  2. Hamid Rezatofighi (61 papers)
  3. Ian Reid (174 papers)
Youtube Logo Streamline Icon: https://streamlinehq.com