Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Post's correspondence problem for hyperbolic and virtually nilpotent groups (2211.12158v2)

Published 22 Nov 2022 in math.GR, cs.CC, and cs.LO

Abstract: Post's Correspondence Problem (the PCP) is a classical decision problem in theoretical computer science that asks whether for pairs of free monoid morphisms $g, h\colon\Sigma\to\Delta^$ there exists any non-trivial $x\in\Sigma*$ such that $g(x)=h(x)$. Post's Correspondence Problem for a group $\Gamma$ takes pairs of group homomorphisms $g, h\colon F(\Sigma)\to \Gamma$ instead, and similarly asks whether there exists an $x$ such that $g(x)=h(x)$ holds for non-elementary reasons. The restrictions imposed on $x$ in order to get non-elementary solutions lead to several interpretations of the problem; we consider the natural restriction asking that $x \notin \ker(g) \cap \ker(h)$ and prove that the resulting interpretation of the PCP is undecidable for arbitrary hyperbolic $\Gamma$, but decidable when $\Gamma$ is virtually nilpotent. We also study this problem for group constructions such as subgroups, direct products and finite extensions. This problem is equivalent to an interpretation due to Myasnikov, Nikolev and Ushakov when one map is injective.

Citations (1)

Summary

We haven't generated a summary for this paper yet.