Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An authentication scheme based on the twisted conjugacy problem (0805.2701v1)

Published 17 May 2008 in math.GR and cs.CR

Abstract: The conjugacy search problem in a group $G$ is the problem of recovering an $x \in G$ from given $g \in G$ and $h=x{-1}gx$. The alleged computational hardness of this problem in some groups was used in several recently suggested public key exchange protocols, including the one due to Anshel, Anshel, and Goldfeld, and the one due to Ko, Lee et al. Sibert, Dehornoy, and Girault used this problem in their authentication scheme, which was inspired by the Fiat-Shamir scheme involving repeating several times a three-pass challenge-response step. In this paper, we offer an authentication scheme whose security is based on the apparent hardness of the twisted conjugacy search problem, which is: given a pair of endomorphisms (i.e., homomorphisms into itself) phi, \psi of a group G and a pair of elements w, t \in G, find an element s \in G such that t = \psi(s{-1}) w \phi(s) provided at least one such s exists. This problem appears to be very non-trivial even for free groups. We offer here another platform, namely, the semigroup of all 2x2 matrices over truncated one-variable polynomials over F_2, the field of two elements, with transposition used instead of inversion in the equality above.

Citations (25)

Summary

We haven't generated a summary for this paper yet.