Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MetaMax: Improved Open-Set Deep Neural Networks via Weibull Calibration (2211.10872v1)

Published 20 Nov 2022 in cs.CV

Abstract: Open-set recognition refers to the problem in which classes that were not seen during training appear at inference time. This requires the ability to identify instances of novel classes while maintaining discriminative capability for closed-set classification. OpenMax was the first deep neural network-based approach to address open-set recognition by calibrating the predictive scores of a standard closed-set classification network. In this paper we present MetaMax, a more effective post-processing technique that improves upon contemporary methods by directly modeling class activation vectors. MetaMax removes the need for computing class mean activation vectors (MAVs) and distances between a query image and a class MAV as required in OpenMax. Experimental results show that MetaMax outperforms OpenMax and is comparable in performance to other state-of-the-art approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.