Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-Scale Evaluation of Open-Set Image Classification Techniques (2406.09112v1)

Published 13 Jun 2024 in cs.CV, cs.AI, and cs.LG

Abstract: The goal for classification is to correctly assign labels to unseen samples. However, most methods misclassify samples with unseen labels and assign them to one of the known classes. Open-Set Classification (OSC) algorithms aim to maximize both closed and open-set recognition capabilities. Recent studies showed the utility of such algorithms on small-scale data sets, but limited experimentation makes it difficult to assess their performances in real-world problems. Here, we provide a comprehensive comparison of various OSC algorithms, including training-based (SoftMax, Garbage, EOS) and post-processing methods (Maximum SoftMax Scores, Maximum Logit Scores, OpenMax, EVM, PROSER), the latter are applied on features from the former. We perform our evaluation on three large-scale protocols that mimic real-world challenges, where we train on known and negative open-set samples, and test on known and unknown instances. Our results show that EOS helps to improve performance of almost all post-processing algorithms. Particularly, OpenMax and PROSER are able to exploit better-trained networks, demonstrating the utility of hybrid models. However, while most algorithms work well on negative test samples -- samples of open-set classes seen during training -- they tend to perform poorly when tested on samples of previously unseen unknown classes, especially in challenging conditions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets