Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying Label-inputted Graph Neural Networks with Deep Equilibrium Models (2211.10629v2)

Published 19 Nov 2022 in cs.LG and cs.AI

Abstract: The success of Graph Neural Networks (GNN) in learning on non-Euclidean data arouses many subtopics, such as Label-inputted GNN (LGNN) and Implicit GNN (IGNN). LGNN, explicitly inputting supervising information (a.k.a. labels) in GNN, integrates label propagation to achieve superior performance, but with the dilemma between its propagating distance and adaptiveness. IGNN, outputting an equilibrium point by iterating its network infinite times, exploits information in the entire graph to capture long-range dependencies, but with its network constrained to guarantee the existence of the equilibrium. This work unifies the two subdomains by interpreting LGNN in the theory of IGNN and reducing prevailing LGNNs to the form of IGNN. The unification facilitates the exchange between the two subdomains and inspires more studies. Specifically, implicit differentiation of IGNN is introduced to LGNN to differentiate its infinite-range label propagation with constant memory, making the propagation both distant and adaptive. Besides, the masked label strategy of LGNN is proven able to guarantee the well-posedness of IGNN in a network-agnostic manner, granting its network more complex and thus more expressive. Combining the advantages of LGNN and IGNN, Label-inputted Implicit GNN (LI-GNN) is proposed. It can be widely applied to any specific GNN to boost its performance. Node classification experiments on two synthesized and six real-world datasets demonstrate its effectiveness. Code is available at https://github.com/cf020031308/LI-GNN

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yi Luo (153 papers)
  2. Guiduo Duan (4 papers)
  3. Guangchun Luo (10 papers)
  4. Aiguo Chen (8 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.