Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Node Injection Attack Based on Label Propagation Against Graph Neural Network (2405.18824v1)

Published 29 May 2024 in cs.CR

Abstract: Graph Neural Network (GNN) has achieved remarkable success in various graph learning tasks, such as node classification, link prediction and graph classification. The key to the success of GNN lies in its effective structure information representation through neighboring aggregation. However, the attacker can easily perturb the aggregation process through injecting fake nodes, which reveals that GNN is vulnerable to the graph injection attack. Existing graph injection attack methods primarily focus on damaging the classical feature aggregation process while overlooking the neighborhood aggregation process via label propagation. To bridge this gap, we propose the label-propagation-based global injection attack (LPGIA) which conducts the graph injection attack on the node classification task. Specifically, we analyze the aggregation process from the perspective of label propagation and transform the graph injection attack problem into a global injection label specificity attack problem. To solve this problem, LPGIA utilizes a label propagation-based strategy to optimize the combinations of the nodes connected to the injected node. Then, LPGIA leverages the feature mapping to generate malicious features for injected nodes. In extensive experiments against representative GNNs, LPGIA outperforms the previous best-performing injection attack method in various datasets, demonstrating its superiority and transferability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proc. 5th Int. Conf. Learn. Representations, 2017.
  2. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in Proc. 6th Int. Conf. Learn. Representations, 2018.
  3. J. Liu, J. Zheng, J. Wu, and Z. Zheng, “Fa-gnn: Filter and augment graph neural networks for account classification in ethereum,” IEEE Trans. Network Sci. Eng., vol. 9, no. 4, pp. 2579–2588, 2022.
  4. L. Cheng, P. Zhu, K. Tang, C. Gao, and Z. Wang, “Gin-sd: Source detection in graphs with incomplete nodes via positional encoding and attentive fusion,” in Proc. 38th AAAI Conf. Artif. Intell., 2024, pp. 55–63.
  5. D. Lin, J. Wu, T. Huang, K. Lin, and Z. Zheng, “Who is who on ethereum? account labeling using heterophilic graph convolutional network,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 54, no. 5, pp. 1541–1553, 2024.
  6. W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Proc. 30th Adv. Neural Inf. Process. Syst., 2017, pp. 1025–1035.
  7. S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-based multi-relational graph convolutional networks,” in Proc. 8th Int. Conf. Learn. Representations, 2020.
  8. C. Gao, J. Zhu, F. Zhang, Z. Wang, and X. Li, “A novel representation learning for dynamic graphs based on graph convolutional networks,” IEEE Trans. Cybern., vol. 53, no. 6, pp. 3599–3612, 2023.
  9. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in Proc. 7th Int. Conf. Learn. Representations, 2019.
  10. J. Wang, P. Chen, B. Ma, J. Zhou, Z. Ruan, G. Chen, and Q. Xuan, “Sampling subgraph network with application to graph classification,” IEEE Trans. Network Sci. Eng., vol. 8, no. 4, pp. 3478–3490, 2021.
  11. L. Sang, M. Xu, S. Qian, and X. Wu, “Adversarial heterogeneous graph neural network for robust recommendation,” IEEE Trans. Comput. Social Syst., vol. 10, no. 5, pp. 2660–2671, 2023.
  12. P. Zhu, B. Wang, K. Tang, H. Zhang, X. Cui, and Z. Wang, “A knowledge-guided graph attention network for emotion-cause pair extraction,” Knowledge-Based Syst., vol. 286, 2024, Art. no. 111342.
  13. J. Tian, B. Wang, R. Guo, Z. Wang, K. Cao, and X. Wang, “Adversarial attacks and defenses for deep-learning-based unmanned aerial vehicles,” IEEE Internet Things J., vol. 9, no. 22, pp. 22 399–22 409, 2022.
  14. P. Zhu, Z. Fan, S. Guo, K. Tang, and X. Li, “Improving adversarial transferability through hybrid augmentation,” Comput. Secur., vol. 139, 2024, Art. no. 103674.
  15. J. Tian, C. Shen, B. Wang, X. Xia, M. Zhang, C. Lin, and Q. Li, “Lesson: Multi-label adversarial false data injection attack for deep learning locational detection,” IEEE Trans. Dependable Secure Comput., early access, pp. 1–15, 2024.
  16. P. Zhu, Z. Pan, Y. Liu, J. Tian, K. Tang, and Z. Wang, “A general black-box adversarial attack on graph-based fake news detectors,” 2024, arXiv:2404.15744.
  17. D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural networks for graph data,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 2847–2856.
  18. H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial attack on graph structured data,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1115–1124.
  19. D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks via meta learning,” in Proc. 7th Int. Conf. Learn. Representations, 2019.
  20. K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and X. Lin, “Topology attack and defense for graph neural networks: An optimization perspective,” in Proc. 28th Int. Joint Conf. Artif. Intell., 2019, pp. 3961–3967.
  21. J. Chen, X. Lin, Z. Shi, and Y. Liu, “Link prediction adversarial attack via iterative gradient attack,” IEEE Trans. Comput. Social Syst., vol. 7, no. 4, pp. 1081–1094, 2020.
  22. J. Li, T. Xie, L. Chen, F. Xie, X. He, and Z. Zheng, “Adversarial attack on large scale graph,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 82–95, 2023.
  23. J. Chen, D. Zhang, Z. Ming, K. Huang, W. Jiang, and C. Cui, “Graphattacker: A general multi-task graph attack framework,” IEEE Trans. Network Sci. Eng., vol. 9, no. 2, pp. 577–595, 2022.
  24. J. Chen, G. Huang, H. Zheng, S. Yu, W. Jiang, and C. Cui, “Graph-fraudster: Adversarial attacks on graph neural network-based vertical federated learning,” IEEE Trans. Comput. Social Syst., vol. 10, no. 2, pp. 492–506, 2023.
  25. Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Adversarial attacks on graph neural networks via node injections: A hierarchical reinforcement learning approach,” in Proc. ACM World Wide Web Conf., 2020, pp. 673–683.
  26. J. Wang, M. Luo, F. Suya, J. Li, Z. Yang, and Q. Zheng, “Scalable attack on graph data by injecting vicious nodes,” Data Min. Knowl. Discovery, vol. 34, no. 5, pp. 1363–1389, 2020.
  27. X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang, “Tdgia: Effective injection attacks on graph neural networks,” in Proc. 27th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2021, pp. 2461–2471.
  28. S. Tao, Q. Cao, H. Shen, J. Huang, Y. Wu, and X. Cheng, “Single node injection attack against graph neural networks,” in Proc. 30th ACM Int. Conf. Knowl. Manage., 2021, pp. 1794–1803.
  29. Z. Wang, Z. Hao, Z. Wang, H. Su, and J. Zhu, “Cluster attack: Query-based adversarial attacks on graph with graph-dependent priors,” in Proc. 31st Int. Joint Conf. Artif. Intell., 2022, pp. 768–775.
  30. J. Gasteiger, A. Bojchevski, and S. Günnemann, “Combining neural networks with personalized pagerank for classification on graphs,” in Proc. 7th Int. Conf. Learn. Representations, 2019.
  31. H. Wang and J. Leskovec, “Combining graph convolutional neural networks and label propagation,” ACM Trans. Inf. Syst., vol. 40, no. 4, pp. 1–27, 2021.
  32. H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui, “On the equivalence of decoupled graph convolution network and label propagation,” in Proc. ACM World Wide Web Conf., 2021, pp. 3651–3662.
  33. Q. Huang, H. He, A. Singh, S.-N. Lim, and A. Benson, “Combining label propagation and simple models out-performs graph neural networks,” in Proc. 9th Int. Conf. Learn. Representations, 2021.
  34. X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with label propagation,” Technical Report, Carnegie Mellon University, 2002.
  35. D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning with local and global consistency,” in Proc. 16th Adv. Neural Inf. Process. Syst., 2003, pp. 321–328.
  36. U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect community structures in large-scale networks,” Phys. Rev. E, vol. 76, no. 3, 2007, Art. no. 036106.
  37. H. Wang, Y. Liu, P. Yin, H. Zhang, X. Xu, and Q. Wen, “Label specificity attack: Change your label as i want,” Int. J. Intell. Syst., vol. 37, no. 10, pp. 7767–7786, 2022.
  38. D. Chen, J. Zhang, Y. Lv, J. Wang, H. Ni, S. Yu, Z. Wang, and Q. Xuan, “Single node injection label specificity attack on graph neural networks via reinforcement learning,” 2023, arXiv:2305.02901.
  39. J. Chen, Y. Chen, H. Zheng, S. Shen, S. Yu, D. Zhang, and Q. Xuan, “Mga: Momentum gradient attack on network,” IEEE Trans. Comput. Social Syst., vol. 8, no. 1, pp. 99–109, 2021.
  40. X. Lin, C. Zhou, J. Wu, H. Yang, H. Wang, Y. Cao, and B. Wang, “Exploratory adversarial attacks on graph neural networks for semi-supervised node classification,” Pattern Recognit., vol. 133, 2023, Art. no. 109042.
  41. S. Tao, Q. Cao, H. Shen, Y. Wu, L. Hou, F. Sun, and X. Cheng, “Adversarial camouflage for node injection attack on graphs,” Information Sciences, vol. 649, 2023, Art. no. 119611.
  42. Y. Chen, H. Yang, Y. Zhang, M. KAILI, T. Liu, B. Han, and J. Cheng, “Understanding and improving graph injection attack by promoting unnoticeability,” in Proc. 10th Int. Conf. Learn. Representations, 2022.
  43. J. Fang, H. Wen, J. Wu, Q. Xuan, Z. Zheng, and C. K. Tse, “Gani: Global attacks on graph neural networks via imperceptible node injections,” IEEE Trans. Comput. Social Syst., early access, pp. 1–14, 2024.
  44. M. Ju, Y. Fan, C. Zhang, and Y. Ye, “Let graph be the go board: gradient-free node injection attack for graph neural networks via reinforcement learning,” in Proc. 37th AAAI Conf. Artif. Intell., 2023, pp. 4383–4390.
  45. P. Hongbin, W. Bingzhe, C. Kevin Chen-Chuan, L. Yu, and Y. Bo, “Geom-gcn: Geometric graph convolutional networks,” in Proc. 8th Int. Conf. Learn. Representations, 2020.
  46. J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, “Beyond homophily in graph neural networks: Current limitations and effective designs,” in Proc. 33th Adv. Neural Inf. Process. Syst., 2020, pp. 7793–7804.
  47. Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised learning with graph embeddings,” in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 40–48.
  48. A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking,” in Proc. 6th Int. Conf. Learn. Representations, 2018.
  49. W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec, “Open graph benchmark: Datasets for machine learning on graphs,” in Proc. 33th Adv. Neural Inf. Process. Syst., 2020, pp. 22 118–22 133.
  50. F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph convolutional networks,” in Proc. 36th Int. Conf. Mach. Learn., vol. 97, 2019, pp. 6861–6871.
  51. X. Zhang and M. Zitnik, “Gnnguard: Defending graph neural networks against adversarial attacks,” in Proc. 33rd Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 9263–9275.
  52. W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity preserving graph convolutional networks,” in Proc. 14th ACM Int. Conf. Web Search Data Mining, 2021, pp. 148–156.
  53. K. Li, Y. Liu, X. Ao, and Q. He, “Revisiting graph adversarial attack and defense from a data distribution perspective,” in Proc. 11th Int. Conf. Learn. Representations, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com