Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Finite Approximations for Mean Field Type Multi-Agent Control and Their Near Optimality (2211.09633v3)

Published 17 Nov 2022 in math.OC

Abstract: We study a multi-agent mean field type control problem in discrete time where the agents aim to find a socially optimal strategy and where the state and action spaces for the agents are assumed to be continuous. The agents are only weakly coupled through the distribution of their state variables. The problem in its original form can be formulated as a classical Markov decision process (MDP), however, this formulation suffers from several practical difficulties. In this work, we attempt to overcome the curse of dimensionality, coordination complexity between the agents, and the necessity of perfect feedback collection from all the agents (which might be hard to do for large populations.) We provide several approximations: we establish the near optimality of the action and state space discretization of the agents under standard regularity assumptions for the considered formulation by constructing and studying the measure valued MDP counterpart for finite and infinite population settings. It is a well known approach to consider the infinite population problem for mean-field type models, since it provides symmetric policies for the agents which simplifies the coordination between the agents. However, the optimality analysis is harder as the state space of the measure valued infinite population MDP is continuous (even after space discretization of the agents). Therefore, as a final step, we provide further approximations for the infinite population problem by focusing on smaller sized sub-population distributions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.