Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Reconstruction in Analysis of Cherenkov Telescopes Images in TAIGA Experiment Using Deep Learning Methods (2211.08971v1)

Published 16 Nov 2022 in astro-ph.IM, astro-ph.HE, and cs.LG

Abstract: Imaging Atmospheric Cherenkov Telescopes (IACT) of TAIGA astrophysical complex allow to observe high energy gamma radiation helping to study many astrophysical objects and processes. TAIGA-IACT enables us to select gamma quanta from the total cosmic radiation flux and recover their primary parameters, such as energy and direction of arrival. The traditional method of processing the resulting images is an image parameterization - so-called the Hillas parameters method. At the present time Machine Learning methods, in particular Deep Learning methods have become actively used for IACT image processing. This paper presents the analysis of simulated Monte Carlo images by several Deep Learning methods for a single telescope (mono-mode) and multiple IACT telescopes (stereo-mode). The estimation of the quality of energy reconstruction was carried out and their energy spectra were analyzed using several types of neural networks. Using the developed methods the obtained results were also compared with the results obtained by traditional methods based on the Hillas parameters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.