Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle identification in ground-based gamma-ray astronomy using convolutional neural networks (1812.01551v1)

Published 4 Dec 2018 in astro-ph.IM, cs.DC, physics.data-an, and stat.ML

Abstract: Modern detectors of cosmic gamma-rays are a special type of imaging telescopes (air Cherenkov telescopes) supplied with cameras with a relatively large number of photomultiplier-based pixels. For example, the camera of the TAIGA-IACT telescope has 560 pixels of hexagonal structure. Images in such cameras can be analysed by deep learning techniques to extract numerous physical and geometrical parameters and/or for incoming particle identification. The most powerful deep learning technique for image analysis, the so-called convolutional neural network (CNN), was implemented in this study. Two open source libraries for machine learning, PyTorch and TensorFlow, were tested as possible software platforms for particle identification in imaging air Cherenkov telescopes. Monte Carlo simulation was performed to analyse images of gamma-rays and background particles (protons) as well as estimate identification accuracy. Further steps of implementation and improvement of this technique are discussed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.