Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Label Quantification (2211.08063v1)

Published 15 Nov 2022 in cs.LG

Abstract: Quantification, variously called "supervised prevalence estimation" or "learning to quantify", is the supervised learning task of generating predictors of the relative frequencies (a.k.a. "prevalence values") of the classes of interest in unlabelled data samples. While many quantification methods have been proposed in the past for binary problems and, to a lesser extent, single-label multiclass problems, the multi-label setting (i.e., the scenario in which the classes of interest are not mutually exclusive) remains by and large unexplored. A straightforward solution to the multi-label quantification problem could simply consist of recasting the problem as a set of independent binary quantification problems. Such a solution is simple but na\"ive, since the independence assumption upon which it rests is, in most cases, not satisfied. In these cases, knowing the relative frequency of one class could be of help in determining the prevalence of other related classes. We propose the first truly multi-label quantification methods, i.e., methods for inferring estimators of class prevalence values that strive to leverage the stochastic dependencies among the classes of interest in order to predict their relative frequencies more accurately. We show empirical evidence that natively multi-label solutions outperform the na\"ive approaches by a large margin. The code to reproduce all our experiments is available online.

Citations (1)

Summary

We haven't generated a summary for this paper yet.