Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

A BayeSN Distance Ladder: $H_0$ from a consistent modelling of Type Ia supernovae from the optical to the near infrared (2211.07657v3)

Published 14 Nov 2022 in astro-ph.CO and astro-ph.HE

Abstract: The local distance ladder estimate of the Hubble constant ($H_0$) is important in cosmology, given the recent tension with the early universe inference. We estimate $H_0$ from the Type Ia supernova (SN~Ia) distance ladder, inferring SN~Ia distances with the hierarchical Bayesian SED model, BayeSN. This method has a notable advantage of being able to continuously model the optical and near-infrared (NIR) SN~Ia light curves simultaneously. We use two independent distance indicators, Cepheids or the tip of the red giant branch (TRGB), to calibrate a Hubble-flow sample of 67 SNe~Ia with optical and NIR data. We estimate $H_0 = 74.82 \pm 0.97$ (stat) $\pm\, 0.84$ (sys) km\,s${-1}$\,Mpc${-1}$ when using the calibration with Cepheid distances to 37 host galaxies of 41 SNe~Ia, and $70.92 \pm 1.14$ (stat) $\pm\,1.49$ (sys) km\,s${-1}$\,Mpc${-1}$ when using the calibration with TRGB distances to 15 host galaxies of 18 SNe~Ia. For both methods, we find a low intrinsic scatter $\sigma_{\rm int} \lesssim 0.1$ mag. We test various selection criteria and do not find significant shifts in the estimate of $H_0$. Simultaneous modelling of the optical and NIR yields up to $\sim$15\% reduction in $H_0$ uncertainty compared to the equivalent optical-only cases. With improvements expected in other rungs of the distance ladder, leveraging joint optical-NIR SN~Ia data can be critical to reducing the $H_0$ error budget.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube