Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Artificial neural networks for predicting the viscosity of lead-containing glasses (2211.07587v2)

Published 11 Nov 2022 in cond-mat.soft, cs.LG, cs.NA, math.NA, and stat.AP

Abstract: The viscosity of lead-containing glasses is of fundamental importance for the manufacturing process, and can be predicted by algorithms such as artificial neural networks. The SciGlass database was used to provide training, validation and test data of chemical composition, temperature and viscosity for the construction of artificial neural networks with node variation in the hidden layer. The best model built with training data and validation data was compared with 7 other models from the literature, demonstrating better statistical evaluations of mean absolute error and coefficient of determination to the test data, with subsequent sensitivity analysis in agreement with the literature. Skewness and kurtosis were calculated and there is a good correlation between the values predicted by the best neural network built with the test data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.