Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of artificial neural networks and genetic algorithms for crude fractional distillation process modeling (1605.00097v1)

Published 30 Apr 2016 in cs.NE

Abstract: This work presents the application of the artificial neural networks, trained and structurally optimized by genetic algorithms, for modeling of crude distillation process at PKN ORLEN S.A. refinery. Models for the main fractionator distillation column products were developed using historical data. Quality of the fractions were predicted based on several chosen process variables. The performance of the model was validated using test data. Neural networks used in companion with genetic algorithms proved that they can accurately predict fractions quality shifts, reproducing the results of the standard laboratory analysis. Simple knowledge extraction method from neural network model built was also performed. Genetic algorithms can be successfully utilized in efficient training of large neural networks and finding their optimal structures.

Citations (10)

Summary

We haven't generated a summary for this paper yet.