Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Talent Recommendation on LinkedIn User Profiles (2211.07297v1)

Published 14 Nov 2022 in cs.IR

Abstract: With the increasing amount of information on the Internet, recommender systems are becoming increasingly crucial in supporting people to find and explore relevant content. This is also true in the online recruitment space, with websites such as LinkedIn, Indeed.com, and Monster.com all using recommender systems. In online recruitment, it can often be challenging for companies to find suitable candidates with appropriate skills because of the huge volume of user profiles available. Identifying users which satisfy a range of different employer needs is also a difficult task. Thus, effective matching of user-profiles and jobs is becoming crucial for companies. This research project applies a wide range of recommendation techniques to the task of user profile recommendation. Extensive experiments are conducted on a large-scale real-world LinkedIn dataset to evaluate their performance, with the aim of identifying the most suitable approach in this particular recommendation scenario.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yuzhou Peng (5 papers)