Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EnsemFDet: An Ensemble Approach to Fraud Detection based on Bipartite Graph (1912.11113v4)

Published 23 Dec 2019 in cs.LG, cs.SI, and stat.ML

Abstract: Fraud detection is extremely critical for e-commerce business. It is the intent of the companies to detect and prevent fraud as early as possible. Existing fraud detection methods try to identify unexpected dense subgraphs and treat related nodes as suspicious. Spectral relaxation-based methods solve the problem efficiently but hurt the performance due to the relaxed constraints. Besides, many methods cannot be accelerated with parallel computation or control the number of returned suspicious nodes because they provide a set of subgraphs with diverse node sizes. These drawbacks affect the real-world applications of existing methods. In this paper, we propose an Ensemble-based Fraud Detection (EnsemFDet) method to scale up fraud detection in bipartite graphs by decomposing the original problem into subproblems on small-sized subgraphs. By oversampling the graph and solving the subproblems, the ensemble approach further votes suspicious nodes without sacrificing the prediction accuracy. Extensive experiments have been done on real transaction data from JD.com, which is one of the world's largest e-commerce platforms. Experimental results demonstrate the effectiveness, practicability, and scalability of EnsemFDet. More specifically, EnsemFDet is up to 100x faster than the state-of-the-art methods due to its parallelism with all aspects of data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yuxiang Ren (24 papers)
  2. Hao Zhu (212 papers)
  3. Jiawei Zhang (529 papers)
  4. Peng Dai (46 papers)
  5. Liefeng Bo (84 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.