Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Universal Construction for Unique Sink Orientations (2211.06072v1)

Published 11 Nov 2022 in math.CO and cs.DM

Abstract: Unique Sink Orientations (USOs) of cubes can be used to capture the combinatorial structure of many essential algebraic and geometric problems. For various structural and algorithmic questions, including enumeration of USOs and algorithm analysis, it is crucial to have systematic constructions of USOs. While some construction methods for USOs already exist, each one of them has some significant downside. Most of the construction methods have limited expressivity -- USOs with some desired properties cannot be constructed. In contrast, the phase flips of Schurr can construct all USOs, but the operation is not well understood. We were inspired by techniques from cube tilings of space; we expand upon existing techniques in the area to develop generalized rewriting rules for USOs. These rewriting rules are a new construction framework which can be applied to all USOs. The rewriting rules can generate every USO using only USOs of lower dimension. The effect of any specific rewriting rule on an USO is simple to understand. A special case of our construction produces a new elementary transformation of USOs, which we call a partial swap. We further investigate the relationship between partial swaps and phase flips and generalize partial swaps to phase swaps.

Citations (2)

Summary

We haven't generated a summary for this paper yet.