Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Combinatorial Property of Geometric Unique Sink Orientations (2008.08992v2)

Published 20 Aug 2020 in math.CO, cs.DM, and math.OC

Abstract: A unique sink orientation (USO) is an orientation of the hypercube graph with the property that every face has a unique sink. A number of well-studied problems reduce in strongly polynomial time to finding the global sink of a USO; most notably, linear programming (LP) and the P-matrix linear complementarity problem (P-LCP). The former is not known to have a strongly polynomial-time algorithm, while the latter is not known to even have a polynomial-time algorithm, motivating the problem to find the global sink of a USO. Although, every known class of geometric USOs, arising from a concrete problem such as LP, is exponentially small, relative to the class of all USOs. Accordingly, geometric USOs exhibit additional properties that set them apart from general USOs, and it may be advantageous, if not necessary, to leverage these properties to find the global sink of a USO faster. Only a few such properties are known. In this paper, we establish a new combinatorial property of the USOs that arise from symmetric P-LCP, which includes the USOs that arise from linear and simple convex quadratic programming.

Citations (4)

Summary

We haven't generated a summary for this paper yet.