Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

Mean-field backward stochastic differential equations and nonlocal PDEs with quadratic growth (2211.05676v3)

Published 10 Nov 2022 in math.PR

Abstract: In this paper, we study general mean-field backward stochastic differential equations (BSDEs, for short) with quadratic growth. First, the existence and uniqueness of local and global solutions are proved with some new ideas for a one-dimensional mean-field BSDE when the generator $g\big(t, Y, Z, \mathbb{P}{Y}, \mathbb{P}{Z}\big)$ has a quadratic growth in $Z$ and the terminal value is bounded. Second, a comparison theorem for the general mean-field BSDEs is obtained with the Girsanov transform. Third, we prove the convergence of the particle systems to the mean-field BSDEs with quadratic growth, and the convergence rate is also given. Finally, in this framework, we use the mean-field BSDE to provide a probabilistic representation for the viscosity solution of a nonlocal partial differential equation (PDE, for short) as an extended nonlinear Feynman-Kac formula, which yields the existence and uniqueness of the solution to the PDE.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.