Mean-field backward stochastic differential equations and nonlocal PDEs with quadratic growth (2211.05676v3)
Abstract: In this paper, we study general mean-field backward stochastic differential equations (BSDEs, for short) with quadratic growth. First, the existence and uniqueness of local and global solutions are proved with some new ideas for a one-dimensional mean-field BSDE when the generator $g\big(t, Y, Z, \mathbb{P}{Y}, \mathbb{P}{Z}\big)$ has a quadratic growth in $Z$ and the terminal value is bounded. Second, a comparison theorem for the general mean-field BSDEs is obtained with the Girsanov transform. Third, we prove the convergence of the particle systems to the mean-field BSDEs with quadratic growth, and the convergence rate is also given. Finally, in this framework, we use the mean-field BSDE to provide a probabilistic representation for the viscosity solution of a nonlocal partial differential equation (PDE, for short) as an extended nonlinear Feynman-Kac formula, which yields the existence and uniqueness of the solution to the PDE.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.