The hull of two classical propagation rules and their applications (2211.04815v2)
Abstract: In this work, we study and determine the dimensions of Euclidean and Hermitian hulls of two classical propagation rules, namely, the direct sum construction and the $(\mathbf{u},\mathbf{u+v})$-construction. Some new criteria for the resulting codes derived from these two propagation rules being self-dual, self-orthogonal, or linear complementary dual (LCD) codes are given. As an application, we construct some linear codes with prescribed hull dimensions, many new binary, ternary Euclidean formally self-dual (FSD) LCD codes, and quaternary Hermitian FSD LCD codes. Some new even-like, odd-like, Euclidean and Hermitian self-orthogonal codes are also obtained. Many of {these} codes are also (almost) optimal according to the Database maintained by Markus Grassl. Our methods contribute positively to improve the lower bounds on the minimum distance of known LCD codes.