Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Trace Reconstruction from a Single Trace (2211.03292v1)

Published 7 Nov 2022 in cs.DS

Abstract: The well-known trace reconstruction problem is the problem of inferring an unknown source string $x \in {0,1}n$ from independent "traces", i.e. copies of $x$ that have been corrupted by a $\delta$-deletion channel which independently deletes each bit of $x$ with probability $\delta$ and concatenates the surviving bits. The current paper considers the extreme data-limited regime in which only a single trace is provided to the reconstruction algorithm. In this setting exact reconstruction is of course impossible, and the question is to what accuracy the source string $x$ can be approximately reconstructed. We give a detailed study of this question, providing algorithms and lower bounds for the high, intermediate, and low deletion rate regimes in both the worst-case ($x$ is arbitrary) and average-case ($x$ is drawn uniformly from ${0,1}n$) models. In several cases the lower bounds we establish are matched by computationally efficient algorithms that we provide. We highlight our results for the high deletion rate regime: roughly speaking, they show that - Having access to a single trace is already quite useful for worst-case trace reconstruction: an efficient algorithm can perform much more accurate reconstruction, given one trace that is even only a few bits long, than it could given no traces at all. But in contrast, - in the average-case setting, having access to a single trace is provably not very useful: no algorithm, computationally efficient or otherwise, can achieve significantly higher accuracy given one trace that is $o(n)$ bits long than it could with no traces.

Citations (1)

Summary

We haven't generated a summary for this paper yet.