Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial-time trace reconstruction in the low deletion rate regime (2012.02844v2)

Published 4 Dec 2020 in cs.DS

Abstract: In the \emph{trace reconstruction problem}, an unknown source string $x \in {0,1}n$ is transmitted through a probabilistic \emph{deletion channel} which independently deletes each bit with some fixed probability $\delta$ and concatenates the surviving bits, resulting in a \emph{trace} of $x$. The problem is to reconstruct $x$ given access to independent traces. Trace reconstruction of arbitrary (worst-case) strings is a challenging problem, with the current state of the art for poly$(n)$-time algorithms being the 2004 algorithm of Batu et al. \cite{BKKM04}. This algorithm can reconstruct an arbitrary source string $x \in {0,1}n$ in poly$(n)$ time provided that the deletion rate $\delta$ satisfies $\delta \leq n{-(1/2 + \varepsilon)}$ for some $\varepsilon > 0$. In this work we improve on the result of \cite{BKKM04} by giving a poly$(n)$-time algorithm for trace reconstruction for any deletion rate $\delta \leq n{-(1/3 + \varepsilon)}$. Our algorithm works by alternating an alignment-based procedure, which we show effectively reconstructs portions of the source string that are not "highly repetitive", with a novel procedure that efficiently determines the length of highly repetitive subwords of the source string.

Citations (8)

Summary

We haven't generated a summary for this paper yet.