Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

The Spectrum of Schrödinger Operators with Randomly Perturbed Ergodic Potentials (2211.02173v1)

Published 3 Nov 2022 in math.SP, math-ph, and math.MP

Abstract: We consider Schr\"odinger operators in $\ell2(\mathbb{Z})$ whose potentials are given by the sum of an ergodic term and a random term of Anderson type. Under the assumption that the ergodic term is generated by a homeomorphism of a connected compact metric space and a continuous sampling function, we show that the almost sure spectrum arises in an explicitly described way from the unperturbed spectrum and the topological support of the single-site distribution. In particular, assuming that the latter is compact and contains at least two points, this explicit description of the almost sure spectrum shows that it will always be given by a finite union of non-degenerate compact intervals. The result can be viewed as a far reaching generalization of the well known formula for the spectrum of the classical Anderson model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.