Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Systematic Binder (2211.01177v3)

Published 2 Nov 2022 in cs.CV, cs.AI, and cs.LG

Abstract: The key to high-level cognition is believed to be the ability to systematically manipulate and compose knowledge pieces. While token-like structured knowledge representations are naturally provided in text, it is elusive how to obtain them for unstructured modalities such as scene images. In this paper, we propose a neural mechanism called Neural Systematic Binder or SysBinder for constructing a novel structured representation called Block-Slot Representation. In Block-Slot Representation, object-centric representations known as slots are constructed by composing a set of independent factor representations called blocks, to facilitate systematic generalization. SysBinder obtains this structure in an unsupervised way by alternatingly applying two different binding principles: spatial binding for spatial modularity across the full scene and factor binding for factor modularity within an object. SysBinder is a simple, deterministic, and general-purpose layer that can be applied as a drop-in module in any arbitrary neural network and on any modality. In experiments, we find that SysBinder provides significantly better factor disentanglement within the slots than the conventional object-centric methods, including, for the first time, in visually complex scene images such as CLEVR-Tex. Furthermore, we demonstrate factor-level systematicity in controlled scene generation by decoding unseen factor combinations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gautam Singh (19 papers)
  2. Yeongbin Kim (2 papers)
  3. Sungjin Ahn (51 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.