Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scoring Black-Box Models for Adversarial Robustness (2210.17140v1)

Published 31 Oct 2022 in cs.LG and cs.AI

Abstract: Deep neural networks are susceptible to adversarial inputs and various methods have been proposed to defend these models against adversarial attacks under different perturbation models. The robustness of models to adversarial attacks has been analyzed by first constructing adversarial inputs for the model, and then testing the model performance on the constructed adversarial inputs. Most of these attacks require the model to be white-box, need access to data labels, and finding adversarial inputs can be computationally expensive. We propose a simple scoring method for black-box models which indicates their robustness to adversarial input. We show that adversarially more robust models have a smaller $l_1$-norm of LIME weights and sharper explanations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jian Vora (6 papers)
  2. Pranay Reddy Samala (2 papers)

Summary

We haven't generated a summary for this paper yet.