Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter-Efficient Tuning Makes a Good Classification Head (2210.16771v2)

Published 30 Oct 2022 in cs.CL and cs.LG

Abstract: In recent years, pretrained models revolutionized the paradigm of natural language understanding (NLU), where we append a randomly initialized classification head after the pretrained backbone, e.g. BERT, and finetune the whole model. As the pretrained backbone makes a major contribution to the improvement, we naturally expect a good pretrained classification head can also benefit the training. However, the final-layer output of the backbone, i.e. the input of the classification head, will change greatly during finetuning, making the usual head-only pretraining (LP-FT) ineffective. In this paper, we find that parameter-efficient tuning makes a good classification head, with which we can simply replace the randomly initialized heads for a stable performance gain. Our experiments demonstrate that the classification head jointly pretrained with parameter-efficient tuning consistently improves the performance on 9 tasks in GLUE and SuperGLUE.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhuoyi Yang (18 papers)
  2. Ming Ding (219 papers)
  3. Yanhui Guo (21 papers)
  4. Qingsong Lv (10 papers)
  5. Jie Tang (302 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.