Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Transformers with Gradient Boosted Decision Trees for NLI Fine-Tuning (2105.03791v2)

Published 8 May 2021 in cs.CL

Abstract: Transfer learning has become the dominant paradigm for many natural language processing tasks. In addition to models being pretrained on large datasets, they can be further trained on intermediate (supervised) tasks that are similar to the target task. For small Natural Language Inference (NLI) datasets, LLMling is typically followed by pretraining on a large (labelled) NLI dataset before fine-tuning with each NLI subtask. In this work, we explore Gradient Boosted Decision Trees (GBDTs) as an alternative to the commonly used Multi-Layer Perceptron (MLP) classification head. GBDTs have desirable properties such as good performance on dense, numerical features and are effective where the ratio of the number of samples w.r.t the number of features is low. We then introduce FreeGBDT, a method of fitting a GBDT head on the features computed during fine-tuning to increase performance without additional computation by the neural network. We demonstrate the effectiveness of our method on several NLI datasets using a strong baseline model (RoBERTa-large with MNLI pretraining). The FreeGBDT shows a consistent improvement over the MLP classification head.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Benjamin Minixhofer (9 papers)
  2. Milan Gritta (13 papers)
  3. Ignacio Iacobacci (24 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.