Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Intensity Control for Accented Text-to-speech (2210.15364v1)

Published 27 Oct 2022 in cs.SD, cs.AI, and eess.AS

Abstract: Accented text-to-speech (TTS) synthesis seeks to generate speech with an accent (L2) as a variant of the standard version (L1). How to control the intensity of accent in the process of TTS is a very interesting research direction, and has attracted more and more attention. Recent work design a speaker-adversarial loss to disentangle the speaker and accent information, and then adjust the loss weight to control the accent intensity. However, such a control method lacks interpretability, and there is no direct correlation between the controlling factor and natural accent intensity. To this end, this paper propose a new intuitive and explicit accent intensity control scheme for accented TTS. Specifically, we first extract the posterior probability, called as ``goodness of pronunciation (GoP)'' from the L1 speech recognition model to quantify the phoneme accent intensity for accented speech, then design a FastSpeech2 based TTS model, named Ai-TTS, to take the accent intensity expression into account during speech generation. Experiments show that the our method outperforms the baseline model in terms of accent rendering and intensity control.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Rui Liu (320 papers)
  2. Haolin Zuo (6 papers)
  3. De Hu (2 papers)
  4. Guanglai Gao (29 papers)
  5. Haizhou Li (286 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.