Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controllable Accented Text-to-Speech Synthesis (2209.10804v1)

Published 22 Sep 2022 in cs.SD, cs.CL, and eess.AS

Abstract: Accented text-to-speech (TTS) synthesis seeks to generate speech with an accent (L2) as a variant of the standard version (L1). Accented TTS synthesis is challenging as L2 is different from L1 in both in terms of phonetic rendering and prosody pattern. Furthermore, there is no easy solution to the control of the accent intensity in an utterance. In this work, we propose a neural TTS architecture, that allows us to control the accent and its intensity during inference. This is achieved through three novel mechanisms, 1) an accent variance adaptor to model the complex accent variance with three prosody controlling factors, namely pitch, energy and duration; 2) an accent intensity modeling strategy to quantify the accent intensity; 3) a consistency constraint module to encourage the TTS system to render the expected accent intensity at a fine level. Experiments show that the proposed system attains superior performance to the baseline models in terms of accent rendering and intensity control. To our best knowledge, this is the first study of accented TTS synthesis with explicit intensity control.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rui Liu (320 papers)
  2. Guanglai Gao (29 papers)
  3. Haizhou Li (286 papers)
  4. Berrak Sisman (49 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.