Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A super-polynomial quantum-classical separation for density modelling (2210.14936v1)

Published 26 Oct 2022 in quant-ph, cs.LG, and stat.ML

Abstract: Density modelling is the task of learning an unknown probability density function from samples, and is one of the central problems of unsupervised machine learning. In this work, we show that there exists a density modelling problem for which fault-tolerant quantum computers can offer a super-polynomial advantage over classical learning algorithms, given standard cryptographic assumptions. Along the way, we provide a variety of additional results and insights, of potential interest for proving future distribution learning separations between quantum and classical learning algorithms. Specifically, we (a) provide an overview of the relationships between hardness results in supervised learning and distribution learning, and (b) show that any weak pseudo-random function can be used to construct a classically hard density modelling problem. The latter result opens up the possibility of proving quantum-classical separations for density modelling based on weaker assumptions than those necessary for pseudo-random functions.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com