Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Quantum versus Classical Learnability of Discrete Distributions (2007.14451v2)

Published 28 Jul 2020 in quant-ph and cs.LG

Abstract: Here we study the comparative power of classical and quantum learners for generative modelling within the Probably Approximately Correct (PAC) framework. More specifically we consider the following task: Given samples from some unknown discrete probability distribution, output with high probability an efficient algorithm for generating new samples from a good approximation of the original distribution. Our primary result is the explicit construction of a class of discrete probability distributions which, under the decisional Diffie-HeLLMan assumption, is provably not efficiently PAC learnable by a classical generative modelling algorithm, but for which we construct an efficient quantum learner. This class of distributions therefore provides a concrete example of a generative modelling problem for which quantum learners exhibit a provable advantage over classical learning algorithms. In addition, we discuss techniques for proving classical generative modelling hardness results, as well as the relationship between the PAC learnability of Boolean functions and the PAC learnability of discrete probability distributions.

Citations (87)

Summary

We haven't generated a summary for this paper yet.