Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hofer geometry via toric degeneration (2210.14726v3)

Published 26 Oct 2022 in math.SG

Abstract: The main theme of this paper is to use toric degeneration to produce distinct homogeneous quasimorphisms on the group of Hamiltonian diffeomorphisms. We focus on the (complex $n$-dimensional) quadric hypersurface and the del Pezzo surfaces, and study two classes of distinguished Lagrangian submanifolds that appear naturally in a toric degeneration, namely the Lagrangian torus which is the monotone fiber of a Lagrangian torus fibration, and the Lagrangian spheres that appear as vanishing cycles. For the quadrics, we prove that the group of Hamiltonian diffeomorphisms admits two distinct homogeneous quasimorphisms and derive some superheaviness results. Along the way, we show that the toric degeneration is compatible with the Biran decomposition. This implies that for $n=2$, the Lagrangian fiber torus (Gelfand--Zeitlin torus) is Hamiltonian isotopic to the Chekanov torus, which answers a question of Y. Kim. We give applications to $C0$-symplectic topology which include the Entov--Polterovich--Py question for the quadric hypersurface. We also prove analogous results for the del Pezzo surfaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube