Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new band selection approach based on information theory and support vector machine for hyperspectral images reduction and classification (2210.14621v1)

Published 26 Oct 2022 in cs.CV

Abstract: The high dimensionality of hyperspectral images consisting of several bands often imposes a big computational challenge for image processing. Therefore, spectral band selection is an essential step for removing the irrelevant, noisy and redundant bands. Consequently increasing the classification accuracy. However, identification of useful bands from hundreds or even thousands of related bands is a nontrivial task. This paper aims at identifying a small set of highly discriminative bands, for improving computational speed and prediction accuracy. Hence, we proposed a new strategy based on joint mutual information to measure the statistical dependence and correlation between the selected bands and evaluate the relative utility of each one to classification. The proposed filter approach is compared to an effective reproduced filters based on mutual information. Simulations results on the hyperpectral image HSI AVIRIS 92AV3C using the SVM classifier have shown that the effective proposed algorithm outperforms the reproduced filters strategy performance. Keywords-Hyperspectral images, Classification, band Selection, Joint Mutual Information, dimensionality reduction ,correlation, SVM.

Citations (7)

Summary

We haven't generated a summary for this paper yet.