Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Boundedness of trace fields of rank two local systems (2210.13563v3)

Published 24 Oct 2022 in math.NT and math.AG

Abstract: Let $p$ be a fixed prime number, and $q$ a power of $p$. For any curve over $\mathbb{F}_q$ and any local system on it, we have a number field generated by the traces of Frobenii at closed points, known as the trace field. We show that as we range over all pointed curves of type $(g,n)$ in characteristic $p$ and rank two local systems satisfying a condition at infinity, the set of trace fields which are unramified at $p$ and of bounded degree is finite. This proves observations of Kontsevich obtained via numerical computations, which are in turn closely related to the analogue of Maeda's conjecture over function fields. The key ingredients of the proofs are Chin's theorem on independence of $\ell$ of monodromy groups, and the boundedness of abelian schemes of $\mathrm{GL}_2$-type over curves in positive characteristics, obtained using partial Hasse invariants; the latter is an analogue of Faltings' Arakelov theorem for abelian varieties in our setting.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.