Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algorithm and Heuristic based on Normalized Mutual Information for Dimensionality Reduction and Classification of Hyperspectral images (2210.13456v1)

Published 22 Oct 2022 in cs.CV

Abstract: In the feature classification domain, the choice of data affects widely the results. The Hyperspectral image (HSI), is a set of more than a hundred bidirectional measures (called bands), of the same region (called ground truth map: GT). The HSI is modelized at a set of N vectors. So we have N features (or attributes) expressing N vectors of measures for C substances (called classes). The problematic is that it's pratically impossible to investgate all possible subsets. So we must find K vectors among N, such as relevant and no redundant ones; in order to classify substances. Here we introduce an algorithm based on Normalized Mutual Information to select relevant and no redundant bands, necessary to increase classification accuracy of HSI. Keywords: Feature Selection, Normalized Mutual information, Hyperspectral images, Classification, Redundancy.

Summary

We haven't generated a summary for this paper yet.