Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proportional marginal effects for global sensitivity analysis (2210.13065v1)

Published 24 Oct 2022 in math.ST, stat.ME, and stat.TH

Abstract: Performing (variance-based) global sensitivity analysis (GSA) with dependent inputs has recently benefited from cooperative game theory concepts.By using this theory, despite the potential correlation between the inputs, meaningful sensitivity indices can be defined via allocation shares of the model output's variance to each input. The Shapley effects'', i.e., the Shapley values transposed to variance-based GSA problems, allowed for this suitable solution. However, these indices exhibit a particular behavior that can be undesirable: an exogenous input (i.e., which is not explicitly included in the structural equations of the model) can be associated with a strictly positive index when it is correlated to endogenous inputs. In the present work, the use of a different allocation, called theproportional values'' is investigated. A first contribution is to propose an extension of this allocation, suitable for variance-based GSA. Novel GSA indices are then proposed, called the ``proportional marginal effects'' (PME). The notion of exogeneity is formally defined in the context of variance-based GSA, and it is shown that the PME allow the distinction of exogenous variables, even when they are correlated to endogenous inputs. Moreover, their behavior is compared to the Shapley effects on analytical toy-cases and more realistic use-cases.

Summary

We haven't generated a summary for this paper yet.