Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Face Emotion Recognization Using Dataset Augmentation Based on Neural Network (2210.12689v2)

Published 23 Oct 2022 in cs.CV

Abstract: Facial expression is one of the most external indications of a person's feelings and emotions. In daily conversation, according to the psychologist, only 7% and 38% of information is communicated through words and sounds respective, while up to 55% is through facial expression. It plays an important role in coordinating interpersonal relationships. Ekman and Friesen recognized six essential emotions in the nineteenth century depending on a cross-cultural study, which indicated that people feel each basic emotion in the same fashion despite culture. As a branch of the field of analyzing sentiment, facial expression recognition offers broad application prospects in a variety of domains, including the interaction between humans and computers, healthcare, and behavior monitoring. Therefore, many researchers have devoted themselves to facial expression recognition. In this paper, an effective hybrid data augmentation method is used. This approach is operated on two public datasets, and four benchmark models see some remarkable results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.