Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Facial Expression of Emotion Made Easy (1211.4500v1)

Published 19 Nov 2012 in cs.HC and cs.GR

Abstract: Facial emotion expression for virtual characters is used in a wide variety of areas. Often, the primary reason to use emotion expression is not to study emotion expression generation per se, but to use emotion expression in an application or research project. What is then needed is an easy to use and flexible, but also validated mechanism to do so. In this report we present such a mechanism. It enables developers to build virtual characters with dynamic affective facial expressions. The mechanism is based on Facial Action Coding. It is easy to implement, and code is available for download. To show the validity of the expressions generated with the mechanism we tested the recognition accuracy for 6 basic emotions (joy, anger, sadness, surprise, disgust, fear) and 4 blend emotions (enthusiastic, furious, frustrated, and evil). Additionally we investigated the effect of VC distance (z-coordinate), the effect of the VC's face morphology (male vs. female), the effect of a lateral versus a frontal presentation of the expression, and the effect of intensity of the expression. Participants (n=19, Western and Asian subjects) rated the intensity of each expression for each condition (within subject setup) in a non forced choice manner. All of the basic emotions were uniquely perceived as such. Further, the blends and confusion details of basic emotions are compatible with findings in psychology.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Joost Broekens (22 papers)
  2. Chao Qu (39 papers)
  3. Willem-Paul Brinkman (2 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.