Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Volatility forecasting using Deep Learning and sentiment analysis (2210.12464v2)

Published 22 Oct 2022 in cs.LG

Abstract: Several studies have shown that deep learning models can provide more accurate volatility forecasts than the traditional methods used within this domain. This paper presents a composite model that merges a deep learning approach with sentiment analysis for predicting market volatility. To classify public sentiment, we use a Convolutional Neural Network, which obtained data from Reddit global news headlines. We then describe a composite forecasting model, a Long-Short-Term-Memory Neural Network method, to use historical sentiment and the previous day's volatility to make forecasts. We employed this method on the past volatility of the S&P500 and the major BRICS indices to corroborate its effectiveness. Our results demonstrate that including sentiment can improve Deep Learning volatility forecasting models. However, in contrast to return forecasting, the performance benefits of including sentiment appear for volatility forecasting appears to be market specific.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. V Ncume (1 paper)
  2. A Paskaramoorthy (1 paper)
  3. T. L van Zyl (1 paper)

Summary

We haven't generated a summary for this paper yet.