DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions
Abstract: Volatility forecasts play a central role among equity risk measures. Besides traditional statistical models, modern forecasting techniques based on machine learning can be employed when treating volatility as a univariate, daily time-series. Moreover, econometric studies have shown that increasing the number of daily observations with high-frequency intraday data helps to improve volatility predictions. In this work, we propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility. Our empirical findings demonstrate that dilated convolutional filters are highly effective at extracting relevant information from intraday financial time-series, proving that this architecture can effectively leverage predictive information present in high-frequency data that would otherwise be lost if realised measures were precomputed. Simultaneously, dilated convolutional filters trained with intraday high-frequency data help us avoid the limitations of models that use daily data, such as model misspecification or manually designed handcrafted features, whose devise involves optimising the trade-off between accuracy and computational efficiency and makes models prone to lack of adaptation into changing circumstances. In our analysis, we use two years of intraday data from NASDAQ-100 to evaluate the performance of DeepVol. Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data, resulting in more accurate predictions compared to traditional methodologies and producing more accurate risk measures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.